Determination of the effective Young's modulus of vertically aligned carbon nanotube arrays: a simple nanotube-based varactor.

نویسندگان

  • Niklas Olofsson
  • Johan Ek-Weis
  • Anders Eriksson
  • Tonio Idda
  • Eleanor E B Campbell
چکیده

The electromechanical properties of arrays of vertically aligned multiwalled carbon nanotubes were studied in a parallel plate capacitor geometry. The electrostatic actuation was visualized using both optical microscopy and scanning electron microscopy, and highly reproducible behaviour was achieved for actuation voltages below the pull-in voltage. The walls of vertically aligned carbon nanotubes behave as solid cohesive units. The effective Young's modulus for the carbon nanotube arrays was determined by comparing the actuation results with the results of electrostatic simulations and was found to be exceptionally low, of the order of 1-10 MPa. The capacitance change and Q-factor were determined by measuring the frequency dependence of the radio-frequency transmission. Capacitance changes of over 20% and Q-factors in the range 100-10 were achieved for a frequency range of 0.2-1.5 GHz.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Height independent compressive modulus of vertically aligned carbon nanotube arrays.

The compressive modulus of dense vertically aligned multiwalled carbon nanotube (CNT) arrays synthesized by chemical vapor deposition was investigated using an optically probed precision-loading platform. For CNT arrays with heights ranging from 15 to 500 microm, the moduli were measured to be about 0.25 MPa and were found to be independent of array height. A continuum mechanics model based on ...

متن کامل

Controllable viscoelastic behavior of vertically aligned carbon nanotube arrays

We have characterized the mechanical behavior of aligned carbon nanotube (CNT) arrays that serve as foam-like energy absorbing materials, by using atomic force microscope indentation. It is shown that the mechanical properties (e.g. elastic modulus, adhesion force, and energy dissipation) of aligned CNT arrays are dependent on the length of CNTs as well as chemical environment that surrounds CN...

متن کامل

The Young's modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation

Articles you may be interested in An arbitrary strains carbon nanotube composite piezoresistivity model for finite element integration Appl. Young's modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment J. Effect of filament aspect ratio on the dielectric response of multiwalled carbon nanotube composites Electromagnetic wave propagation in dense car...

متن کامل

Optical characterization of vertically aligned single-walled carbon nanotube arrays

Here we discuss spectroscopic investigation and characterization of vertically aligned single-walled carbon nanotube (VA-SWNT) arrays, which were synthesized using the alcohol catalytic CVD method [1]. Growth of the VA-SWNTs was monitored using an in situ absorbance measurement [2], which provides information about the growth process. Primary methods employed were Resonance Raman and UV-Vis-NIR...

متن کامل

Biofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina

Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 38  شماره 

صفحات  -

تاریخ انتشار 2009